

Part no.	SP3806DLG
Emitting color	GREEN
Material	INGaN
Picture	

■Absolute Maximum Ratings at (TA=25°C)

Part No.	REVERSE VOLTAGE (<100 uA)	D.C.FORWARD CURRENT	OPERATING TEMPERATURE RANGE	STORAGE TEMPERATURE RANGE	LEAD SOLDERING TEMP.
SP3806DLG	5.0V	30mA	-30°CTO +85°C	-40°CTO +90°C	240 FOR 4 SEC

■Electrical/Optical Characteristics at TA=25 °C

Part No.	WAVELENGTH Hue @20MA (nm)		FORWARD VOLTAGE @20MA(V)		Reverse Current	LUMINOUS INTENSITY @20MA (mcd)	
SP3806DLG	MIN	MAX	MIN	MAX	IR(VR=5V)	MIN	MAX
SP3000DLG	517	523	2.8	3.4	10uA	1600	2400

IV :Tolerance each Binlimit is $\pm 15\%$ VF: Tolerance each Binlimit is $\pm 15\%$

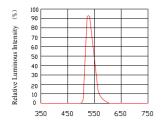
■WAVELENGTH(IF=2MA.Ta=25 °C)

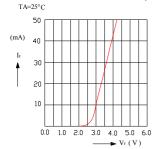
COLOR	BLUE			
ITEM	λ d 20MA(nm)			
BIN	MIN MAX			
BIN1	517	520		
BIN2	520	523		
BIN3	523	526		

■LUMINOUS INTENSITY@20MA(mcd)

COLOR	BLUE		
ITEM	IV 20MA(mcd)		
BIN	MIN	MAX	
BIN1	1600	1800	
BIN2	1800	2000	
BIN3	2000	2200	
BIN4	2200	2400	

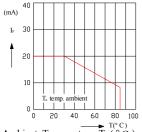
■ FORWARD VOLTAGE@20MA(V)


ITEM VF 20 BIN MIN	0MA(V)
BIN MIN	3.6.37
	MAX
BIN1 2.8	2.9
BIN2 2.9	3.0
BIN3 3.0	3.1
BIN4 3.1	3.2
BIN5 3.2	3.3
BIN6 3.3	3.4

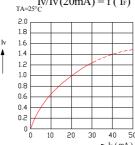

■ Directivity

$$\label{eq:Relative Spectrum Emission I} \begin{split} \text{Relative Spectrum Emission I}_{\text{rel}} = f\left(I\right) \text{ , } T_{\text{A}} = 25^{\circ}\text{C} \text{, } I_{\text{F}} = 20 \text{ mA} \\ V(I) = \text{Standard eye response curve} \end{split}$$

Wavelength (nm)
FIG.1 RELATIVE LUMINOUS INTERSITY


Forward Current $I_F = f(V_F)$

Forward Voltage (V)


FIG.2 FORWARD CURRENT VS. FORWARD VOLTAGE

Ambient Temperature VS. Allowable Forward Current

Ambient Temperature T_A(°C)
FIG.4 FORWARD CURRENT
VS. AMBIENT TEMPERATURE

Relative Luminous Intensity $I_{TA=25^{\circ}C}$ $I_{V}/I_{V}(20mA) = f(I_{F})$

Forward Curret I_F (mA)
FIG.3 RELATIVE LUMINOUS INTENSITY
VS. FORWARD CURRENT

Radiation Characteristic $I_{rel} = f(q)$

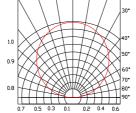
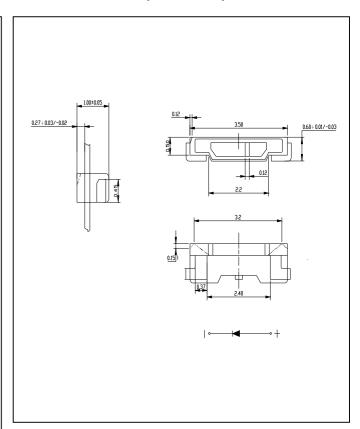
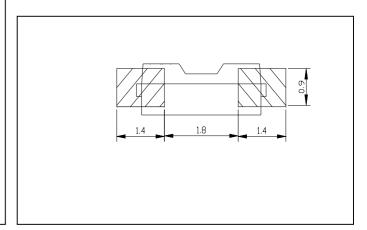
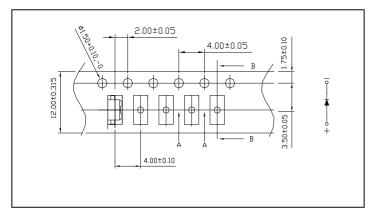
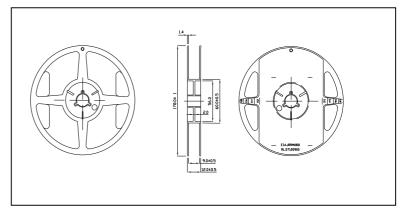




FIG.5 RADIATION DIAGRAM


■ Dimensions(Unit:mm)



recommended

■ Package specifications (mm)

RELIABILITY

TEST ITEMS AND RESULTS					
Test Item		Test Conditions	Note	Number of Damaged	
Solderability (Reflow Soldering)	JEITA ED-4701 300-301	Tald=240±5℃ 4sec	1 time over 95%	0/50	
Thermal Shock	MIL-STD 202-107D MIL-STD 705-1051 MIL-STD 808-1011	0°C - 90°C 15sec. 15sec	20cycles	0/50	
Temperature Cycle	JEITA ED-4701 100-105	-40°C - 25°C - 90°C - 25°C 30min. 5min. 30min. 5min	100 cycles	0/50	
Moisture Resistance Cyclic	JEITA ED-4701 200-203	25°C - 65°C10°C 90%RH 24hrs/1cycle	10 cycles	0/50	
Temperature Humidity Storage	MIL-STD202-103B JIS-C-7021 B-11	Ta=60°C RH=90%	1000hrs	0/50	
Low Temperature Storage	JIS-C-7021 B-12	Ta=-40°C	1000hrs	0/50	
Steady State Operating Life of High Humidity Heat	MIL-STD202-103B JIS-C-7021 B-11	85℃, RH=85%, If=20MA	500hrs	0/50	

JUDGMENT CRITERIA OF FAILURE FOR THE RELIABILITY

Measuring items	Symbol	Measuring conditions	Judgement criteria for failure
Forward voltage	VF(V)	IF=20MA	Over U*1.2
Reverse current	IR (uA)	VR=5V	Over U*2
Luminous intensity	IV (mcd)	IF=20MA	Below S*0.5

Note: 1.U means the upper limit of specified characteristics. S means initial value.

2. Measurment shall be taken between 2 hours and after the test pieces have been returned to normal ambient conditions after completion of each test.

LED

Application (Soldering)

Manual soldering (We do not recommend this method strongly.)

Soldering tin material: tin 6/4 alloy or contained Ag.

To prevent cracking, please bake before manual soldering.

seconds. If the temperature become higher, apply in a shorter time (1sec)

In manual soldering, take care not to damage the package especially terminal or resin.

(Do not give stress to the product when soldering.)

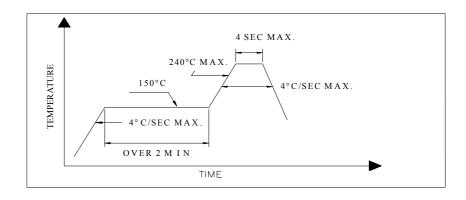
Do not use again it you remove the soldered product.

It is recommended using an iron with a temperature control.

Reflow Soldering

Recommend tin glue specifications:

Melting temperature:150-260°C


Contains: Sn 96.5%, Ag 3.0%, Gu0.5 % JIS Z 3282TEST

Never take next process until the component is cooled down to room temperature after reflow.

The recommended reflow soldering profile (measuring on the surface of the LED resin) is following:

Cleaning

The conditions of cleaning after soldering:

An alcohol-based solvent such as lsopropyl Alcohol(IPA) is recommended.

Temperature Time: <50°C*30sec, or <30°C*3min

Ultra sonic cleaning: <15W/bath; Bath volume:1liter max.

Curing: 100 max, <3min

Cautions of Pick and Place

It should be avoided to load stress on the resin during high temperature.

Avoid rubbing or scraping the resin by any object.

Electric-static may cause damage to the component. Please confirm that the equipment is grounding well. Using an ionzer fan is recommended.

Cautions of Design and Applications

It should be done to connect with a current-limiting serial resistor. Avoid to drive reverse voltage over the specifications on LEDwhen ON/OFF.

Any application should refer to the specifications of absolute maximum ratings.

The dimensions of the recommended soldering pattern may mot meet every user. Please confirm and study first before designing the soldering pattern in order to obtain the best performance of soldering.

Do not contact with any component on the assembly board.

Appendix

Notes for designing

Care must be taken to provide the current limiting resistor in the circuit so as to drive the Ju Yuan LEDswithin the rated figures. Also, caution should be taken not to overload Ju Yuan LEDs with instataneous voltage at the turning ON and OFF of the circuit.

When using the pulse drive care must be taken to keep the average current within the rated figures. Also, the circuit should be designed so as be subjected to reverse voltage when turning off the Ju Yuan LEDs.

Storage

In order to avoid the absorption of moisture, it is recommended to solder Ju Yuan LEDs as soon as possible after unpacking the sealed envelope.

If the envelope is still packed, to store it in the environment as following

- (1) Temperature: 5° C -30° C (41° F) Humidity: RH 60% Max.
- (2) After this bag is opened, devices that will be applied to infrared reflow, vapor-phase reflow, or equivalent soldering process must be:
- a. Completed within 24hours.
- b. Stored at less than 30% RH.
- (3)Devices require baking before mounting, if:
 - (2) a or (2)b is not met.
- (4) If baking is required, devices must be baked under below conditions:
- 48 hours at 70° C \pm 3° C.